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KEY TAKEAWAYS
•This article examines how the 
application of AI-based 3D video 
capture technology can be used to help 
with predicting shoulder injury risk.
•It provides a brief explanation of the 
difference between 2D and 3D video capture 
technology and explains why AI-based technology 
needs accuracy and validation, especially if used for 
injury prediction and prevention. 
•It also explains the process used to adapt the ACGIH 
upper limb localized fatigue threshold limit value for 
practical utilization in the shoulder injury risk assessment.

ARTIFICIAL 
INTELLIGENCE

RYGERSZEM/ISTOCK/GETTY IMAGES PLUS



assp.org  DECEMBER 2024  PROFESSIONAL SAFETY PSJ   25

MMOST ERGONOMIC RISK ASSESSMENTS are completed by watch-
ing a person work, making measurements, performing calcu-
lations, and comparing the results against a checklist, index 
or published standard. In addition to being time-consuming, 
these observational assessments are prone to inaccuracy and 
inconsistency due to interoperator variance. If 10 different 
practitioners perform an ergonomic risk assessment on the 
same job using observational techniques, it is unlikely that they 
would produce identical results. The results would vary because 
everyone perceives what they see a little differently when using 
the standard observational methods deployed today. This is an 
ideal opportunity to apply artificial intelligence (AI) to objec-
tively measure the performance of a work task and assist the 
practitioner with ergonomic risk assessments.

This article focuses on the use of AI for identification of 
ergonomic risk associated with upper-limb fatigue in jobs re-
quiring raised and extended arm postures. AI is increasingly 
applied to real-world problems in industry to perform tasks 
that require visual perception, speech recognition, decision-
making and in-process quality checks. Advances in AI are com-
bined with advances in mobile devices such as smartphones to 
incorporate processing power, advanced cameras and inertial 
measurement unit sensors. Inertial measurement unit sensors 
are worn on the body to measure and report acceleration and 
angular velocity as a person’s limbs are in motion.

This article explains the use of AI to characterize a worker’s 
3D motion to assist practitioners in providing accurate, repeat-
able and objective assessments. Without AI assistance, compara-
ble upper-limb fatigue studies would take a practitioner countless 
hours to complete and require potentially error-prone subjective 
decisions. This article also describes the enabling technologies, 
background research and development of a new shoulder injury 
risk assessment (SIRA) methodology for ergonomic analysis.

AI-Based 3D Motion Capture
A significant advancement of this project is the implemen-

tation of AI-based 3D motion capture from single-camera task 
videos. Moving from current 2D motion capture technology to 
3D motion capture is a leap in technology and needed for in-
creased accuracy of ergonomic risk assessments. The limitations 
of 2D and the importance of 3D motion capture can be illustrat-
ed with a simple example using the lifting posture as shown in 
Figure 1 (p. 26). The 2D joint angle calculation of trunk flexion 
angle (illustrated by dotted lines) is dependent upon the viewing 
plane of the camera. In 2D, the back angle when viewed from 
the side is interpreted differently than the angle when viewed 
from the front. Imagine walking around the stick figure and the 
calculated 2D trunk flexion angle varies dramatically, from near 
zero to 67° in this example, depending upon the view of the cam-
era. This effect is much less prominent for 3D motion capture 
systems, and the resulting 3D joint angles provide more accurate 
inputs to posture-based ergonomic assessments.

Research Background
Electromyography (EMG) data, video, and subjective sur-

veys with workers in the field and participants in controlled 
laboratory settings were collected in a series of studies (e.g., 
Alabdukarim & Nussbaum, 2019; Gillette & Stephenson, 
2018; Iranzo et al., 2020). Wireless EMG sensors were placed 
on the skin over muscles and measured neural stimulation 
as an electrical signal and a measure of muscle activity (Her-
mens et al., 2000). The lab environment provided precise 

data collection, with choreographed task sequences, precisely 
measured work areas and a 12-camera video capture system. 
On-site data collections involved valuable real-world examples 
of workers performing elevated work tasks in various chal-
lenging environments. This field and lab data acquisition pro-
cess produced hours of video and billions of EMG data points. 
Analysis of this dataset led to the ability to quantify muscle 
activity and to predict fatigue risk of different job tasks (see 
“The TLV Curve” section for further details). One objective 
of this analysis was to develop models of fatigue risk while 
working with and without a shoulder exoskeleton. For exam-
ple, EMG data were used to determine whether a shoulder 
exoskeleton reduced muscle fatigue risk during automotive 
assembly (Gillette et al., 2022). 

These datasets will be used to inform the development of an 
ASTM F48 standard test method for shoulder exoskeleton assess-
ment using EMG. The test method documents how EMG data 
can be utilized with the American Conference of Governmental 
Industrial Hygienists (ACGIH, 2016) upper limb localized fa-
tigue threshold limit value (TLV). This ASTM F48 standard 
will benefit from insights gained during these research projects, 
along with feedback from industrial and academic partners. The 
research findings also led to the development of a practical appli-
cation of this methodology via the SIRA.

A New Ergonomics SIRA Methodology
Worksite data collected during automotive assembly, warehouse 

construction and tunnel construction informed the development 
of the AI-driven SIRA. During lab testing, EMG and multicamera 
video data were combined to understand how posture, posture 
duration and tool weights could be used to predict risk of muscle 
fatigue. During field testing, EMG data were successfully col-
lected, but motion tracking using inertial measurement units or 
standard video proved to be challenging and time consuming. It 
became apparent that there would be advantages (increased safety, 
reduced work disruption and improved accuracy) to finding an 
alternative means to collect workers’ motion data.

The answer came from recent advances in single-camera mo-
tion capture that use computer vision and machine learning of 
human movement datasets to generate 3D postures. In general, 
AI-based motion capture extracts what it detects as human 
movement from a video and matches it to an anthropometric 
model while learning from previously collected movements. 
Interestingly, this motion capture technology is driven in large 
part by the requirements of movie and game developers for fast 
and accurate 3D human motion capture. Early work to stream-
line the SIRA into an app technology utilized a combination of 
open-source and proprietary software as the motion capture 
pipeline. Given the current limitations of AI motion capture 
technology, such apps require continued development but are 
promising as a future ergonomic tool. The 3D SIRA methodol-
ogy is shown as a schematic diagram in Figure 2 (p. 27).

The process begins with acquiring one or more digital 
videos of a work task (“job”) and uploading the video for pro-
cessing. The processing is completed on a dedicated server for 
computing and storage resources that people refer to as “the 
cloud.” The video is uploaded to the cloud, then transcoded 
and formatted for input to the AI motion capture server. SIRA 
uses a simple application programming interface (API) for 
setting the motion capture and file output parameters. The 
video is processed frame by frame to identify the individual’s 
3D pose. Once the video is processed, the 3D joint angle data 
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are retrieved via the API and used to generate datasets that are 
compared to the ACGIH TLV curve.

The TLV Curve
The ACGIH upper limb localized fatigue TLV is a loga-

rithmic curve relating muscle exertion (maximum voluntary 
contraction, or %MVC) and duration (duty cycle percent). This 
curve shows the intuitive relationship between muscle exer-
tion and time to fatigue. An exertion level held longer than the 
threshold duty cycle percent on the curve (i.e., a point “above 
the curve”) will lead to predicted fatigue (Figure 3, p. 28). For 
example, high muscle exertion can be held only for a short 
duration before being considered above the acceptable fatigue 
TLV and an increased risk for shoulder injury. When analyzing 
lab or field data, the fatigue risk value is calculated as the EMG 
amplitude minus the TLV as determined by the measured duty 
cycle (Gillette & Stephenson, 2018).

When using EMG sensors, maximum isometric muscle con-
tractions are first collected to normalize the EMG signals to 
%MVC. Next, the %MVC required to move to combinations of 
shoulder and elbow angles while using different tool weights 

is determined utilizing EMG data from lab studies (Figure 4, 
p. 28). This mapping of postures and tool weights can then 
be combined with duty cycle data (percent of total work time 
held in a particular posture) to determine whether the TLV is 
exceeded. For example, it was found that repetitively moving 
to a 135° shoulder flexion position with a 5-lb tool required 
30.8 %MVC. According to the ACGIH TLV curve, this combi-
nation of posture and tool weight would be predicted to cause 
fatigue at or above 18.4% of the duty cycle (see Figure 3, p. 28).

The guidelines for taking video are straightforward: frame and 
follow the worker in the video field or select a fixed camera posi-
tion, if possible. Obtain a clear shot of both of the worker’s hands, 
often at an approximately 45° camera angle from the front of the 
worker. In addition, minimize other workers in the background 
so as to not confuse AI processing. The requirements for the video 
length and content vary according to the job task. For example, if 
a worker is performing automotive assembly with 1- to 2-minute 
repetitive cycles over a 2-hour shift, then a single 1- to 2-minute 
video may be sufficient. If the work is variable like construction or 
agricultural equipment assembly, it would be more representative 
to take multiple videos of the various parts of the job task. 

FIGURE 1
CALCULATED TRUNK FLEXION ANGLES

Example of calculated 2D and 3D trunk flexion angles as the camera view starts with a side view and rotates around the worker.
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AI motion capture data from the job video are used to iden-
tify intervals when the shoulder and elbow angles are within a 
posture range. Duty cycles for each arm posture are the relative 
time durations within the posture ranges. Arm postures while 
using a specified tool weight are mapped to previous lab data to 
determine %MVC values. With %MVC and duty cycle values, 
a point on the ACGIH graph can be plotted and it can be deter-
mined whether the fatigue TLV is exceeded. For example, when 
considered separately, none of the arm postures involved in this 
job task exceed the fatigue TLV, as indicated by the crosses in 
Figure 5 (p. 28). However, cumulative fatigue of the shoulder 
also must be considered. This is determined using a weighted 
average based on duration in each of the arm postures and the 
total time in the arm postures. In this example, the combined 
effect of the arm postures is above the fatigue TLV as indicated 
by the red diamond. Thus, the shoulder is at risk of fatigue and 
an ergonomic intervention is recommended.

Methodology to Application
Early prototypes of the SIRA were created in a spreadsheet 

before developing a prototype desktop and mobile app. The pro-
totype SIRA app is used to capture field and lab videos that are 
automatically processed using AI. The methodology schematic 
shown in Figure 2 provides the basis for how data are collected, 

uploaded and processed using AI. Within the prototype app, the 
motion data are analyzed to identify the arm postures and inter-
vals that are used as inputs to the fatigue TLV predictive model. 
Figure 5 (p. 28) shows the results of a video processed by the AI. 
The prototype SIRA app was developed for easy identification of 
the at-risk postures and understanding which postures are con-
tributing to that risk. The prototype SIRA app outputs a summa-
ry of the arm postures and fatigue risk for the analyzed job task.

Methodology Application Accuracy Validation
Research requires data that provide empirical evidence and 

quantitative results that achieve statistical significance. Data 
can be collected in the lab or in the field. Because an app like 
SIRA can be used anywhere, accuracy testing and validation of 
the methodology started in the lab and then later in the field. 
Since the prototype SIRA app is focused on elevated shoulder 
postures, a lab protocol was designed to capture data from three 
types of simulated work tasks. The lab stations mimic a standing 
assembly job (“standing task”), a sitting assembly job (“sitting 
task”), and a load, transfer or stow material handling job (“shelf 
task”). Testing in a biomechanics lab allows researchers to si-
multaneously collect mobile-based video data for the AI system, 
lab-based multicamera video motion capture, and EMG data. 
Comparing AI motion capture to lab motion capture provides a 

FIGURE 2
AI PROCESSING & SIRA

The AI video processing and SIRA consists of five phases: acquire the video, upload the video, generate tracking skeletons, calculate 3D angles and per-
form TLV assessment calculations.
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FIGURE 4
SHOULDER & ELBOW JOINT ANGLES

Examples of shoulder and elbow joint angles that are involved in the standing assembly task. Note that the participant moved to all postures with a 3-lb 
drill and without a tool in hand.

1) shoulder 130°, elbow 5°, drill placed on upper target
2) shoulder 100° elbow 10°, precision threading nut
3) shoulder 90°, elbow 20°, drill socket tightening nut
4) shoulder 90°, elbow 75°, precision threading nut
5) shoulder 70°, elbow 70°, drill placed on mid target	

6) shoulder 125°, elbow 5°, precision threading nut
7) shoulder 120°, elbow 5°, drill socket tightening nut
8) shoulder 75°, elbow 15°, precision touch target
9) shoulder 90°, elbow 80°, precision touch target
10) shoulder 130°, elbow 5°, precision touch target

FIGURE 3
UPPER LIMB LOCALIZED  
FATIGUE TLV CURVE

The ACGIH upper limb localized fatigue TLV curve. Combinations of 
%MVC and duty cycle above the curve are predicted to cause fatigue.

Note. Adapted from Upper Limb Localized Fatigue: TLV Physical Agents 
7th Edition Documentation, by ACGIH, 2016. 

FIGURE 5
RIGHT ARM SIRA RESULTS

SIRA right arm output for a job task that involved use of a 5-lb tool and 
100% duty cycle. Points on ACGIH graph for each arm posture (crosses) as 
well as the cumulative effect of the arm postures (red diamond) relative to 
the fatigue TLV (blue curve). The cumulative effect of all postures indicat-
ed by the diamond shape shows fatigue is predicted in the right shoulder.
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measure of accuracy, while comparing the SIRA app fatigue pre-
diction to EMG data provides a measure of validation.

Job task stations were built for initial pilot testing of the exper-
imental protocol. These job task stations were adjusted to set the 
arm elevation angles for the participant. The participant complet-
ed the three job tasks while wearing EMG sensors and retroreflec-
tive markers for the lab-based motion analysis. The participant 
was fitted with two shoulder exoskeletons for comparisons be-
tween working with and without an exoskeleton and between the 
exoskeleton designs. The standing task was completed with a 3-lb 
drill (Figure 4), the sitting task with a 5-lb drill (Figure 6) and the 
shelf task with 7-lb containers (Figure 7). Three synchronized 
smartphones mounted in different locations were used to capture 
videos of the task being performed to check if camera position 
impacted AI motion capture accuracy (Figure 8, p. 30).

Summary Discussion
Just like understanding how a confined space multi-gas de-

tector works, how it is checked for accuracy and the steps for 
calibration, it is critical that safety professionals understand AI 
as a tool for injury prevention. 

The focus of this article is on the methodology, application, 
and accuracy testing of objective AI motion capture and the 
prototype SIRA app. The article describes the progression of lab 
and field research on shoulder fatigue risk assessment to prac-
tical application. The approach leverages a large dataset from 
studies of workers in lab and real-world conditions performing 
physically demanding tasks requiring overhead work. A method-
ology was developed that allows for the direct utilization of the 
ACGIH TLV for upper limb localized fatigue, a widely accepted 
standard for evaluating risk. Using AI motion capture from a job 
task video enables quick, repeatable task assessments that may 
significantly reduce the inaccuracies of interoperator deviation. 
The limitation on using AI motion capture rests with obtaining a 
clear, unobstructed view of the worker without other workers in 
the video frame. A benefit is that AI enables ergonomics assess-
ments without requiring a tape measure, pen or calculator. 

Lab-based studies benefit from systematic manipulation of 
posture conditions, additional measurement capabilities and 
accuracy comparisons. However, it is difficult to simulate indus-
trial work conditions, and the participants may not be skilled at 
the tasks of interest. On-site studies benefit from real-world task 
conditions and skilled participants but are potentially limited in 

motion capture as noted and require coordination to minimize 
job disruption. AI-based motion capture in real-world environ-
ments allows on-site assessments without requiring wearing of 
sensors and without disrupting the work process. In fact, all that 
is required to initiate the assessment process is permission to vid-
eo record a job task, allowing ergonomics professionals to focus 
on utilizing the results for injury mitigation.

AI-based video capture can be extended to standard ergo-
nomics assessments used to evaluate lifting and lowering such as 
the NIOSH Lifting Equation, rapid upper limb assessment and 
rapid entire body assessment, Bureau of Workers’ Compensation/
Ohio State University Lifting Guidelines, Liberty Mutual Manual 

FIGURE 7
SHELF TASK POSTURE EXAMPLE

Example of a posture assumed during the shelf task that requires 
packing, transporting, and lifting or lowering containers and involves 
twisting, turning, bending, reaching out and walking.

FIGURE 6
SITTING TASK POSTURE EXAMPLE

Example of a posture assumed during the sitting task with the original video (left), stick figure from the AI motion capture (center), and joint angles 
calculated from the stick figure (right).
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Materials Handling guidelines, and Exo-LiFFT (Zelik et al., 2022). 
These assessments utilize information about posture, which could 
be analyzed by AI-based video, and lifted load, which could be 
entered by the safety professional to estimate injury risk. Accurate 
full-body posture and motion data can also facilitate more sophis-
ticated biomechanical assessments, such as energy expenditure 
and low back compressive forces. The possibilities for using this 
technology to reduce worker injury risks holds great promise, 
but feedback from safety professionals using the technology is 
essential to making it more accurate and overcoming some of the 
limitations with capturing video. When considering AI-based 
technology for injury prevention, one principle to remember is “In 
God we trust, but all others bring data.” AI-based injury risk as-
sessments require thorough accuracy testing, validation of analy-
sis and usability trials. This is especially important when decisions 
are being made for protecting worker safety and health. Safety 
professionals who are considering the use of an AI-based risk as-
sessment tool are encouraged to request a trial of the technology 
and test it at their workplace environment.

Researchers and practitioners are optimistic that AI motion cap-
ture will make it possible to use tools like the prototype SIRA app 
to assess whether work tasks are likely to lead to shoulder injuries. 
This automated assessment would assist in identifying situations 
where workers may benefit from ergonomic interventions such as 
an exoskeleton. Further lab and field AI motion capture accuracy 
validation research is being sponsored by a National Safety Council 
grant awarded to Iowa State University. The goal is to publish find-
ings of this expanded AI accuracy study to assist safety profession-
als when considering AI-based assessment tools.  PSJ
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FIGURE 8
STANDING WITHOUT EXOSKELETON, TRIAL NO. 2

Example of accuracy testing comparing shoulder elevation angles from the 12-camera lab motion analysis system to AI motion capture from two smart-
phone locations.
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